Comparison of growth models for sequential hermaphrodites by considering multi-phasic growth

B. G. Matthias ${ }^{1}$, R. N. M. Ahrens ${ }^{1}$, M. S. Allen ${ }^{1}$, L. A. Lombardi-Carlson ${ }^{2}$, G. R. Fitzhugh ${ }^{2}$

1. University of Florida, 7922 NW $71^{\text {st }}$ St., Gainesville, FL 32653, United States
2. National Marine Fisheries Science Service, Panama City, FL 32408, United States

Corresponding Author: bmatthias@ufl.edu

Abstract

The von Bertalanffy (VB) growth model has been extensively used to describe fish growth. However, it may not be the best predictor of lifetime growth patterns for fish with complex life history (e.g., hermaphroditism). We sought to determine if growth models accounting for maturity and sex change were more appropriate than the VB model at capturing the growth and maturation patterns of Gag Mycteroperca microlepis, a protogynous hermaphrodite. To account for changes in growth at maturity, we used the Lester et al. (2004) growth model (bi-phasic Lester) and a modified Lester et al. (2004) model to account for an additional growth phase at sex change (tri-phasic Lester). We also compared management reference points from each model using a yield-per-recruit (YPR) framework. The tri-phasic Lester model described growth and reproductive schedules better than the bi-phasic Lester or VB models, indicating separate growth phases associated with maturation and sex change. Estimates of $F_{M A X}$ from the YPR analysis were lower when using the tri-phasic Lester model ($0.21 \mathrm{yr}^{-1}$) compared to the VB model (0.33 yr^{-1}) when growth parameters were linked to natural mortality. Fishing mortality rates resulting

in 35% of unfished total and male-specific spawning stock biomasses-per-recruit were similar for all models, but female-specific estimates were lower using the bi-phasic Lester model. Reference points from the VB model were generally lower compared to either Lester model using natural mortality rates that were not tied with the growth parameters. Our results support arguments that a single growth curve is insufficient to capture lifetime growth of fish. However, growth curves from the VB and tri-phasic Lester models were similar for all ages, especially less than age 12. This suggests the VB model can be used to describe mean length-at-age when information on reproductive status is not available, but may result in inappropriate management recommendations.

1. Introduction

The von Bertalanffy growth model (hereafter referred to as VB; von Bertalanffy, 1938) has been extensively used to describe growth of fish and other taxa that display indeterminate growth (Ricker, 1975; Lester et al., 2004). One of the main advantages of the VB model is its strong biological and empirical support (Beverton and Holt, 1957; Chen et al., 1992; Lester et al., 2004). However, this model has been criticized because it seems unlikely that one growth curve should be able to represent the complex physiological changes happening throughout the life of an organism (Day and Taylor, 1997; Czarnołe'ski and Kozłowski, 1998; Lester et al., 2004). The VB model is relatively inflexible as it considers only decreasing incremental growth throughout the life of the organism, which may not hold true for very young fish (e.g., larval and early juvenile growth phases; Beverton and Holt, 1957; Ricker, 1975; Walters and Martell, 2004). More recently the model has been criticized because it does not account for changes in energy allocation to reproduction after a fish reaches maturity (Charnov, 1993; Charnov et al., 2001; Lester et al., 2004). This suggests that using the VB model can lead to misspecification of management reference points and could result in over- or under-exploitation because the VB model ignores potential changes in growth patterns before and after maturation.

Accurately estimating life history parameters, such as growth and reproductive schedules, are crucial to management because these traits are often used to develop size-based regulations (e.g., size limits, harvest slots, etc.), to set harvest limits, and are major components in fisheries assessment models (Ricker, 1975; Jennings et al., 2001; Radomski et al., 2001; Walters and Martell, 2004). Commonly, fish growth is estimated independently of reproductive schedules (e.g., length or age at maturation), where growth is assumed to follow the VB model and estimates of age/length at maturation are obtained using a logistic regression. This process
assumes that age and length interact to influence the timing of maturation via: 1) the relationship between age and length or 2) directly accounting for the growth variation by estimating both age and length regression coefficients. This ignores any interaction between maturity and growth, even though it has been shown that both the timing of maturation and the amount of energy allocated towards reproduction may influence lifetime growth (Charnov, 1993; Charnov et al., 2001; Lester et al., 2004). There are numerous examples of growth models that incorporate the influence of maturity on growth (e.g., Brody, 1945; Lester et al., 2004) and assume that fish grow according to multiple phases throughout their life. One such example, developed by Lester et al. (2004), assumes a period(s) of linear growth prior to maturation (i.e. no reproductive investment) and growth following the VB model after maturation. Because this and similar models incorporate the age at maturation as a parameter, changes in the timing of or biased estimates of maturity can have large impacts on the subsequent growth curves.

Thus, fish experiencing physiological or behavioral changes after maturity, such as sexual transition, should experience an additional growth phase once individuals change sex. This is because the energetic costs of producing eggs are markedly higher than those of producing sperm (Asher et al., 2008). Therefore in protogynous hermaphrodites (individuals initially mature as female), females that have transitioned to male will have additional energy resources to devote to either growth or to mate acquisition (St. Mary, 1994; Chu and Lee, 2012; Cogalniceanu et al., 2013). Additionally males often suffer from high energetic costs and increased mortality due to increased levels of aggression and resource defense, reduced time foraging, or fasting during mating season (e.g., Neuhaus and Pelletier, 2001; Hoffman et al., 2008; Georgiev et al., 2014). However these changes associated with sex change are often ignored when estimating growth because many authors use the VB model to describe growth rates (for examples see: Buxton,

1992; Garratt et al., 1993; Alonzo and Mangel, 2004; Alonzo et al., 2008; Cossington et al., 2010; Linde et al., 2011; Fenberg and Roy, 2012).

It is important to consider models other than the VB to describe the complex changes happening throughout the life of a sex-changing fish as a result of the physiological and behavioral changes likely associated with sex change. Several authors have modified the VB model to explain the sexual-size dimorphism observed in many sex-changing species (Garratt et al., 1993; Adams and Williams, 2001; Munday et al., 2004; Linde et al., 2011), but have largely ignored the physiological and behavioral changes also associated with changing sex. Garratt et al. (1993) developed a bi-phasic VB model that described accelerated growth after transition (i.e. a growth spurt). However this model did not incorporate changes associated with maturation. Several authors back-calculated length-at-age estimates to compare the growth rates of fish that had changed sex to those that were still the primary sex, but did not assess potential changes in growth due to maturation or sex change (e.g., Adams and Williams, 2001; Munday et al., 2004; Linde et al., 2011). We sought to expand on these studies by modifying the Lester et al. (2004) growth model to account for an additional growth phase associated with sex change. Our primary objective was to determine if accounting for just maturity (i.e. the bi-phasic model developed by Lester et al. (2004) or accounting for growth transitions associated with maturity and sex change (i.e. tri-phasic Lester) would more accurately describe the growth patterns of a protogynous hermaphroditic fish than the standard VB model. Our second objective was to compare management reference points from each model using a yield-per-recruit framework to determine the implications of using each growth model.

2. Methods

We used the Gulf of Mexico Gag Mycteroperca microlepis as a case study for this analysis. Gag is a long-lived (maximum observed age 31 years) protogynous hermaphrodite. Gag are targeted in both commercial and recreational fisheries. Gag length (fork length in mm), age, and histology data were obtained from fisheries-dependent and -independent samples between 19792012 from the National Marine Fisheries Service (NMFS) used in the 2013 Gag stock assessment (SEDAR, 2014). Gag length-, maturity-, and sex change-at-age data were fit using a Bayesian hierarchical framework to predict growth using VB, bi- and tri-phasic Lester models, and timing of maturation and sex change assuming logistic functions. Growth models were run in program R version 3.1.3 using runjags version 3.3.0 (Denwood, 2013; R Development Core Team, 2013) and yield-per-recruit models were run in program R version 3.1.3 (R Development Core Team, 2013). All equations for the growth models and yield-per-recruit equations are presented in Tables 1 and 2 respectively.

The data came from multiple fishery-dependent sources $(\sim 31,700)$ and fishery-independent surveys $(\sim 1,500)$. Because of the selectivity of the fishery-dependent sources, growth was modeled in the recent Gag assessment using a truncated normal distribution with a constant standard deviation to account for minimum length limits in commercial and recreational fisheries (developed by McGarvey and Fowler, 2002; SEDAR, 2014). Additionally, they used a modified VB model that assumed a period of linear growth from age-0 (fixed at 10 cm) to age-1 (SEDAR, 2014). We chose to use the traditional formulation of the VB model incorporating an agespecific standard deviation in order to reduce model complexity and avoid the assumption of a constant standard deviation. Because there were samples of small, young fish from fishery independent surveys ($\sim 1,750$ less than 500 mm and almost 300 less than age-1), data were aggregated without any consideration for sample sizes within each gear type following the
recommendations of Wilson et al. (2015). As shown in Wilson et al. (2015), when there are samples of small, young fish, this method helps account for some of the effects of gear selectivity on growth parameter estimation.

2.1. Growth Models

Mean length-at-age from the VB model was estimated using the standard formulation of the von Bertalanffy growth equation; where L_{∞} is the average maximum attainable length, k is the Brody growth coefficient scaling size to catabolism, and t_{0} is the theoretical length-at-age 0 if the fish always grew according to the VB model (Eq. 1; Table 1). For the bi-phasic Lester model, mean length-at-age was estimated using the growth model developed by Lester et al. (2004); where h is the pre-reproductive growth rate, t_{l} is the age intercept for the pre-reproductive growth phase, and T is age at maturity (Eq. 2; Table 1). The Lester et al. (2004) formulation also estimates reproductive investment (g), which is used to estimate k and L_{∞} in the post-maturation growth phase (Eq. 2; Table 1). The tri-phasic Lester model is identical to the bi-phasic Lester, except there is an additional growth phase after transition to male at age τ and sex-specific estimates of g_{s}, k_{s}, and $L_{\infty, s}$ (Eq. 3; Table 1). We assumed length-at-age was normally distributed with a constant coefficient of variation (Eq. 4; Table 1).

Age-based maturity $m_{a, i}$ and sex change $D_{a, i}$ for individual i was described using Bernoulli trials with age-specific probabilities of being mature or male (Eqs. 7 and 8; Table 1). Age-specific probabilities of being mature or male were estimated with a logistic function where T and τ are the age at which 50% of the of individuals are mature or male and the sigma terms (σ_{T} and σ_{τ}) represent the slope of the logistic function for being mature (i.e. female) or male, respectively (Eqs. 5 and 6; Table 1). These equations were the same for all growth models.

The VB, bi- and tri-phasic Lester model fits were compared using deviance information criterion (DIC; Spiegelhalter et al., 2002) where $p(y \mid \bar{\theta})$ is the value of the likelihood at the mean parameter values, $p(y \mid \theta \quad$ is the value of the likelihood function for draw n of the joint posterior distribution, and N is the number of samples in the posterior distribution (Eqs. 9 and 10; Table 1). Bayesian models were run using seven chains, each generating 1,500 samples of the posterior distribution using a thinning rate of 100 . Convergence was verified using Gelman and Rubin diagnostics (Gelman and Rubin, 1992; Brooks and Gelman, 1998). All estimated parameters from the growth models and logistic regressions had uninformative priors.

2.2. Yield-Per-Recruit Models

We used age-structured yield-per-recruit models to calculate the fishing mortality rates that would result in maximum yield-per-recruit $\left(F_{M A X}\right)$ and spawning stock biomass being 35% of unfished condition using total biomass $\left(F_{35 T}\right)$ and sex-specific biomasses $\left(F_{35 F}, F_{35 M}\right.$ for female and male respectively). The models incorporated age-specific growth in length and weight, and survival schedules. Growth equations used, described in the previous section, were the VB, biphasic Lester and tri-phasic Lester (Eqs. 1-3; Table 1). For this model we chose to make the simplifying assumption that the timing of both maturation and sex change remained constant over exploitation rates, similar to many assessment models (including Gag; SEDAR, 2014; see Provost and Jensen, 2015) and Alonzo and Mangel (2004) and Brooks et al. (2008).

Survivorship schedules $\left(l_{a}\right)$ were used to calculate the probability of a recruit surviving to each age using Lorenzen (2000) size-based natural mortality $\left(M_{a}\right)$, fishing mortality (F) and agespecific vulnerability to harvest (V_{a}; Eq. 1; Table 2). Unfished conditions were determined by setting F to zero when calculating the survivorship schedule (Eq. 1; Table 2). Uncertainty in overall natural mortality rate ($M_{\text {base }}$) was assessed using two methods; 1) $M_{\text {base }}$ was assumed to
be equal to the k estimated from the appropriate growth model (Walters and Martell, 2004); and 2) $M_{\text {base }}$ was held constant over all growth models and set to $0.1342 \mathrm{yr}^{-1}$, the estimate of natural mortality used in the 2013 stock assessment (Eqs. 2 and 3; Table 2; SEDAR, 2014). These two scenarios represent likely scenarios for assessment models, where an estimate of natural mortality is obtained using surrogate information obtained from the growth model (Charnov, 1993; Jensen, 1996; Walters and Martell, 2004), and when there is an independent estimate of natural mortality (i.e. via methods developed by Hoenig, 1983; SEDAR, 2014). When $M_{\text {base }}$ was set equal to k, we further assumed two scenarios for the tri-phasic Lester model where; 1) $M_{\text {base }}$ was sex-specific and changed with sexual transition and 2) $M_{\text {base }}$ was constant post maturation and was set to the female estimate of k (Eq. 3; Table 1). Juvenile mortality rates were held constant and set to equal the female estimate for k from the appropriate growth model. Agespecific vulnerability was simulated using a logistic model where $L_{\text {lim }}$ is the minimum length limit in the Gulf of Mexico recreational fishery (56 cm ; Eq. 4; Table 2).

These models produced yield-per-recruit and spawning stock biomass-per-recruit. Because Gag are sequential hermaphrodites, we chose to assess the impacts of fishing mortality rate for each sex separately and for combined sexes. Generally assessment models are concerned with either female biomass or total biomass (Brooks et al., 2008). However this ignores male reproductive contribution. Therefore we assessed male spawning stock biomass in order to highlight the sex-specific impacts of exploitation on the male-phase because overharvest of males could result in sperm limitation if male biomass falls too low (Coleman et al., 1996; Alonzo and Mangel, 2004).

Weight-at-age was calculated using the length-weight equation (Eq. 5; Table 2) and was used to calculate adult female and male spawning stock biomass per recruit $\left(S S B_{F} / R\right.$ and $S S B_{M} / R$
respectively; Eqs. 6 and 7; Table 2). Parameter values for the length-weight equation were obtained from SEDAR (2014). Total spawning stock biomass $\left(S S B_{T} / R\right)$ was calculated as the sum of $S S B_{F} / R$ and $S S B_{M} / R$ for a given fishing mortality rate. The probabilities associated with being a female $\left(P_{\text {fem }, a}\right)$ or male $\left(P_{\text {male }, a}\right)$ at age were modeled using a double logistic for females (i.e. the probability of being mature minus the probability of being male) and a single logistic for males (Eqs. 8 and 9; Table 2). Yield-per-recruit (Y) was summed over all ages for each fishing mortality rate (Eq. 10; Table 2). For each growth model, the yield-per-recruit model was repeated $N=10,500$ times and parameter values for the growth models and probabilities of being female or male were drawn from the joint posterior distributions.

3. Results

The tri-phasic Lester model performed the best, using DIC, when describing the length-atage and reproductive schedules of Gag. Additionally, both the bi- and tri-phasic Lester models preformed better than the VB model ($\Delta \mathrm{DIC}$ values of 110,0 , and 722 respectively). However, all of the models predicted similar growth patterns up to the age at transition, about age 12 (Fig. 1A). All models overestimated the length-at-age of individuals between the ages of 1 and 2, presumably due to selectivity, but appeared to fit the samples less than age- 1 and greater than age 2 (Fig. 2). After about age 12, the models diverged, with the bi-phasic Lester model slightly overestimating and the VB model slightly underestimating the length of the oldest fish relative to the tri-phasic model (Figs. 1A and 2). Comparing the age-based maturity estimates, the VB model (i.e. growth and reproductive schedules estimated independently) had a higher estimate of age-at- 50% maturity than the other models ($T=3.5$ vs. 2.6 and 2.7 years for the bi- and tri-phasic Lester models respectively; Table 3; Fig. 1). For the timing of sex change, all models produced
similar estimates and fits, with the age-at-50\% sex change around 12.6 or 12.7 years; Table 3; Fig. 1).

The tri-phasic Lester growth model had the lowest $\Delta \mathrm{DIC}$, indicating that growth decreases after females transition to males. This model suggests that fish allocated more resources to reproduction after sex change than before $\left(g_{s=F}=0.28 \mathrm{yr}^{-1}(0.27-0.29)\right.$ vs. $g_{s=m}=0.32 \mathrm{yr}^{-1}(0.31-$ 0.33)). Further, estimates from the tri-phasic Lester model indicated higher metabolic rates (k) and lower L_{∞} for males compared with females (Table 4). This model also appeared to perform best at estimating the length of the oldest fish given the available data (ages 20-30; Figs. 1A and 2).

Assuming metabolic rates are proportional to the base natural mortality, the $F_{\text {MAX }}$ estimates for each model ranged from $0.21-0.33 \mathrm{yr}^{-1}$, with the estimates using the tri-phasic Lester model resulting in the lowest and the VB being the highest values (Table 4; Fig. 3). Fishing mortality rates resulting in total spawning stock biomasses $\left(F_{35 T}\right)$ were quite variable, ranging from 0.15 to $0.18 \mathrm{yr}^{-1}$, with the VB model resulting in the highest estimate and both tri-phasic Lester models being the lowest (Table 4; Fig. 3). Female specific $S S B / R, F_{35 F}$ estimates from the bi-phasic Lester model were lowest $\left(F_{35 F}=0.23 \mathrm{yr}^{-1}\right)$ and estimates from the VB and both tri-phasic Lester were similar $\left(F_{35 F}=0.34 \mathrm{yr}^{-1} ;\right.$ Table 4; Fig. 3). Fishing mortality rates resulting in the male spawning stock biomasses of 0.35 of unfished were similar between all models ($F_{35 M}=0.07-0.08$ yr^{-1}; Table 4, Fig. 3).

With equal values for the base mortality rate ($M_{b a s e}=0.1342 \mathrm{yr}^{-1}$), the $F_{\text {MAX }}$ estimates for each model ranged from 0.30 to $0.40 \mathrm{yr}^{-1}$, with the estimates using the bi-phasic Lester model resulting in the highest and the VB being the lowest values (Table 5; Fig. 4). Fishing mortality rates resulting in total spawning stock biomasses were the lowest for the VB model $\left(F_{35 T}=0.18\right.$
$\left.\mathrm{yr}^{-1}\right)$ and were the highest for the bi-phasic Lester model $\left(F_{35 T}=0.26 \mathrm{yr}^{-1}\right.$; Table 5; Fig. 4). Female specific $S S B / R, F_{35 F}$ estimates from the bi-phasic Lester model were lowest $\left(F_{35 F}=0.32 \mathrm{yr}^{-1}\right)$ and highest from the tri-phasic Lester model ($F_{35 F}=0.44 \mathrm{yr}^{-1}$; Table 4; Fig. 4). Estimates of fishing mortality rates resulting in the male spawning stock biomasses of 0.35 of unfished were similar between all models ($F_{35 M}=0.08 \mathrm{yr}^{-1}$; Table 4; Fig. 4).

4. Discussion

Growth models incorporating changes in growth rates at maturation and sex change were found to be statistically better at describing Gag growth than the VB model. Following the growth models through a simple YPR analysis revealed very different estimates of $F_{M A X}$ and fishing mortality rates that resulted in the spawning stock biomasses falling below 35% of the unfished conditions. Along with the work of Charnov, Lester, and associates (Charnov, 1993; Charnov et al., 2001; Lester et al., 2004), this analysis showed that it is important to consider multi-phasic growth models for species with complex life history traits such as sex change when predicting growth patterns and developing management strategies.

Our study supports the arguments of Charnov (1993), Day and Taylor (1997), Czarnołe'ski and Kozłowski (1998), Charnov et al. (2001) and Lester et al. (2004) that a single growth curve is not suited to describe the lifetime growth of fish. However, it is important to note that the predicted length-at-age for fish below approximately age 12-13 were almost visually identical between all of the models. It was also striking how similar the VB and the tri-phasic Lester model predictions were for all ages, even for the oldest ages (20-30 years). This suggests the VB model can be used to predict the growth of sex changing fish when reproductive status is not available. However, it is important to avoid using the VB model without consideration of other models if life history traits are linked to growth characteristics.

The tri-phasic model predicted higher energy allocation towards reproduction in the male phase than the female phase. However this does not imply that males are allocating energy towards increasing gonad tissue growth. This increase in reproductive investment is likely associated with increased aggression and changes in behavior because more aggressive males will have a greater chance at defending mating opportunities, mating sites, and territories (Tecot et al., 2013; Georgiev et al., 2014). However, this usually comes at the cost of riskier behaviors, higher metabolic rates (k) and increased mortality from decreased foraging time or direct malemale conflict (e.g., Neuhaus and Pelletier, 2001; Hoffman et al., 2008; Georgiev et al., 2014). This increase in mortality after transitioning to males is also supported by the empirical relationship between natural mortality and k (e.g. $M=1.65 * k, M=1.5 * k$ or $M=k$; Charnov, 1993; Jensen, 1996; Walters and Martell, 2004), as well as the invariant relationship between reproductive effort and M derived using the VB model (Charnov, 2008). However, further work is still needed to determine if there are differences in sex-specific natural mortality rates for Gag.

Currently, models used to predict the growth of sex changing fish ignore gender by using the VB model or estimate separate growth curves for fish that changed sex and those that had not (e.g., Garratt et al., 1993; Adams and Williams, 2001; Munday et al., 2004; Linde et al., 2011). Often maturation or gender data are not available so using a single model to describe fish growth may be unavoidable. Using models such as those developed by Garratt et al. (1993), Adams and Williams (2001), Munday et al. (2004) or Linde et al. (2011) would exclude age-length pairs where there is no information on the reproductive state. In the case of Gag, this would result in the loss of over 97% of the total data. By excluding this much data, we would be introducing additional parameter uncertainty and potential biases if reproductive state information were not missing at random. Using growth models such as the tri-phasic Lester model would avoid some
of these issues and unlike the VB models, provide a way to describe sex-specific changes in growth when at least some gender and maturity data exist.

Other studies assessing changes in growth associated with sex change have found that males experience a growth spurt surrounding the timing of transition (e.g., Garratt et al., 1993; Walker and McCormick, 2004, 2009; Walker et al., 2007; Munday et al., 2009; McCormick et al., 2010). These studies mainly used daily otolith increment analysis to measure the otolith growth rates before and after sex change for small, short-lived sex changing species (e.g. Walker and McCormick, 2004, 2009; Walker et al., 2007; Munday et al., 2009; McCormick et al., 2010). It is expected that this growth spurt allows newly transitioned males to gain an additional size advantage over large females within the harem and further allows them to suppress the growth of the largest females (McCormick et al., 2010). Garratt et al. (1993) fit a sex-specific bi-phasic VB growth model to a protogynous hermaphrodite Chrysoblephus puniceus to describe the malebiased sexual size dimorphism by assuming a male growth spurt. This model assumed females followed the typical VB model and fish that transitioned to male were fit with the bi-phasic VB model. Unlike the aforementioned studies, Adams and Williams (2001), Munday et al. (2004), and Linde et al. (2011) examined the growth of protogynous hermaphrodites Coral Trout Plectropomus maculatus and Rainbow Wrasse Coris julis and did not find a growth spurt at sex change for either of these species. Similar to these studies, the tri-phasic Lester model does not provide evidence for a transitional growth spurt in Gag because the estimates of the age-at-sex change were almost identical for all models and because the predicted growth curves were very similar. Additionally, it is believed that the Gag mating system is not haremic, suggesting that a lack of a male growth spurt could provide evidence against haremic mating systems. However,
this study did not directly test for transitional growth spurt and further work is needed to address the possibility of a growth spurt in Gag.

Management of fish populations often relies on estimates of growth and reproductive schedules to set harvest regulations. Age- and length-structured population models are often constructed using information from the VB model, and surrogate information on age-specific fecundity, vulnerability, and natural mortality that are dependent on the VB model (e.g., using the relationships by Jensen, 1996; Lorenzen, 1996, 2000; Gwinn et al., 2010). When we assumed $M_{b a s e}=k$, the VB models generally produced the highest estimates for each reference point. Conversely, when using an estimate of natural mortality that was not based on information from the growth model, the VB model generally produced the lowest reference point estimates. Because of the differences in reference points based on our assumptions, obtaining accurate estimates of both growth and natural mortality are necessary to inform management decisions and preform stock assessments, especially when natural mortality is based on information from the growth model.

The major focus to improve growth estimates has been to assess ways to improve the VB fit to account for non-representative sampling (see Gwinn et al., 2010; Wilson et al., 2015). These studies have focused on the effects of sampling bias on parameter estimates, not on the impacts of using models other than the VB. By using models other than the VB, our results showed that common management reference points ($F_{M A X}, F_{35 T}, F_{35 F}$, and $F_{35 M}$) were highly dependent on the assumptions of how fish grow throughout their lives. Further, using the incorrect growth model will affect biological reference points associated with spawning stock biomass or spawning potential ratio. In this study, we assessed the sensitivity of equilibrium reference points to
different growth models. Further research will be needed to assess the impacts of switching from the VB to tri-phasic Lester models when using more advanced assessment models.

Management reference points often rely solely on mature female biomass for dioecious species and are focused either on total mature biomass or just female biomass for hermaphroditic species (Brooks et al., 2008). Similar to Alonzo et al. (2008), our results show that relatively low fishing mortality rates decreased male spawning stock biomass to 35% of the unfished condition, and therefore can become severely depleted at fishing mortality rates associated with $F_{M A X}, F_{35 T}$ and $F_{35 F}$. However, the extent and implications of severely reduced male biomass depends on fertilization rates, which are often unknown for many species (Brooks et al., 2008), and plasticity in the timing of sex change. Brooks et al. (2008) suggested using female-specific reference points if fertilization rates are high, but at low fertilization rates, male reference points performed better when the timing of sex change is static. Because we used a per-recruit framework and did not incorporate stock-recruitment relationships, egg fertilization, or variation in the timing of sex change, we did not assess the implications of using sex-specific or total spawning stock biomass reference points and further work is still needed to determine the appropriate reference points for sex changing fish.

In addition to differences in management and biological reference points between the VB and tri-phasic Lester models, the assumptions being made about the interactions between growth and maturity can have large impacts on management outcomes. It is well supported that life history traits, such as growth and reproductive traits can change due to size selective fishing mortality (Jørgensen, 1990; Rijnsdorp, 1993; Grift et al., 2003; Olsen et al., 2004, 2005; Sattar et al., 2008). Because the VB model does not explicitly account for reproduction, changes in the timing of maturation and/or sex change must be accounted for by assuming changes in one or more
parameters (e.g. k or L_{∞}). Unlike the VB model, changes in growth can solely be accounted for by assuming changes in the timing of maturity or sex change when using the tri-phasic Lester model. For instance, a decrease in the age at maturity will also decrease the mean size-at-age of mature fish because they spend less time as a juvenile experiencing high growth rates. This will also influence the timing of sex change due to the decreased size-at-age and interactions between fertility, mortality and the population structure (Iwasa, 1991; Munday et al., 2006; Warner, 1988). Therefore, in populations that have experienced changes in the timing of maturation or sex change, it is even more important to consider models other than the VB to account for the impacts of reproduction on fish growth.

Acknowledgments

We thank Zach Siders from the University of Florida and John Walter from the National Marine Fisheries Service for discussions and revisions that helped improve this manuscript. This study was funded through the National Marine Fisheries Service Recruitment Training and Research Program, grant number NA11NMF4550121, in collaboration with the University of Florida.

References

Adams, S., Williams, A.J., 2001. A preliminary test of the transitional growth spurt hypothesis using the protogynous coral trout Plectropomus maculatus. J. Fish Biol. 59, 183-185.

Alonzo, S.H., Ish, T., Key, M., MacCall, A.D., Mangel, M., 2008. The importance of incorporating protogynous sex change into stock assessments. Bull. Mar. Sci. 83, 163-179.

Alonzo, S.H., Mangel, M., 2004. The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex-changing fish. Fish. Bull. 102, 1-13.

Asher, M., Lippmann, T., Epplen, J.T., Kraus, C., Trillmich, F., Sachser, N., 2008. Large males dominate: ecology, social organization, and mating system of wild cavies, the ancestors of the guinea pig. Behav. Ecol. Sociobiol. 62, 1509-1521.

Beverton, R.J.H., Holt, S.J., 1957. On the dynamics of exploited fish populations, Fishery Investigations Series. Ministry of Agriculture, Fisheries and Food, London.

Brody, S., 1945. Bioenergetics and growth; with special reference to the efficiency complex in domestic animals. Reinhold Publishing Corporation, New York.

Brooks, E.N., Shertzer, K.W., Gedamke, T., Vaughan, D.S., 2008. Stock assessment of protogynous fish: evaluating measures of spawning biomass used to estimate biological reference points. Fish. Bull. 106, 12-23.

Brooks, S.P., Gelman, A., 1998. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434-455.

Buxton, C.D., 1992. The application of yield-per-recruit models to two South African sparid reef species, with special consideration to sex change. Fish. Res. 15, 1-16.

Charnov, E.L., 2008. Fish growth: Bertalanffy k is proportional to reproductive effort. Environ. Biol. Fishes 83, 185-187.

Charnov, E.L., 1993. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology. Oxford University Press.

Charnov, E.L., Turner, T.F., Winemiller, K.O., 2001. Reproductive constraints and the evolution of life histories with indeterminate growth. Proc. Natl. Acad. Sci. 98, 94609464.

Chen, Y., Jackson, D.A., Harvey, H.H., 1992. A comparison of von Bertalanffy and polynomial functions in modelling fish growth data. Can. J. Fish. Aquat. Sci. 49, 1228-1235.

Chu, C.C., Lee, R.D., 2012. Sexual dimorphism and sexual selection: a unified economic analysis. Theor. Popul. Biol. 82, 355-363.

Cogalniceanu, D., Székely, P., Székely, D., Rosioru, D., Bancila, R.I., Miaud, C., 2013. When males are larger than females in ecthotherms: reproductive investment in the Eastern Spadefoot Toad Pelobates syriacus. Copeia 2013, 699-706.

Coleman, F.C., Koenig, C.C., Collins, L.A., 1996. Reproductive styles of shallow-water groupers (Pisces: Serranidae) in the eastern Gulf of Mexico and the consequences of fishing spawning aggregations. Environ. Biol. Fishes 47, 129-141.

Cossington, S., Hesp, S.A., Hall, N.G., Potter, I.C., 2010. Growth and reproductive biology of the foxfish Bodianus frenchii, a very long-lived and monandric protogynous hermaphroditic labrid. J. Fish Biol. 77, 600-626.

Czarnołe‘ski, M., Kozłowski, J., 1998. Do Bertalanffy’s growth curves result from optimal resource allocation? Ecol. Lett. 1, 5-7.

Day, T., Taylor, P.D., 1997. Von Bertalanffy's growth equation should not be used to model age and size at maturity. Am. Nat. 381-393.

Denwood, M.J., 2013. runjags: An R Package Providing Interface Utilities, Distributed Computing Methods and Additional Distributions For MCMC Models in JAGS. J. Stat. Softw. 1-26.

Fenberg, P.B., Roy, K., 2012. Anthropogenic harvesting pressure and changes in life history: insights from a rocky intertidal limpet. Am. Nat. 180, 200-210.

Garratt, P.A., Govender, A., Punt, A.E., 1993. Growth acceleration at sex change in the protogynous hermaphrodite Chrysoblephus puniceus (Pisces: Sparidae). South Afr. J. Mar. Sci. 13, 187-193.

Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 457-472.

Georgiev, A.V., Russell, A.F., Thompson, M.E., Otali, E., Muller, M.N., Wrangham, R.W., 2014. The Foraging Costs of Mating Effort in Male Chimpanzees (Pan troglodytes schweinfurthii). Int. J. Primatol. 35, 725-745.

Grift, R.E., Rijnsdorp, A.D., Barot, S., Heino, M., Dieckmann, U., 2003. Fisheries-induced trends in reaction norms for maturation in North Sea plaice. Mar. Ecol. Prog. Ser. 257, 247-257.

Gwinn, D.C., Allen, M.S., Rogers, M.W., 2010. Evaluation of procedures to reduce bias in fish growth parameter estimates resulting from size-selective sampling. Fish. Res. 105, 75-79.

Hoenig, J., 1983. Empirical Use of Longevity Data to Estimate Mortality-Rates. Fish. Bull. 81, 898-903.

Hoffman, C.L., Ruiz-Lambides, A.V., Davila, E., Maldonado, E., Gerald, M.S., Maestripieri, D., 2008. Sex differences in survival costs of reproduction in a promiscuous primate. Behav. Ecol. Sociobiol. 62, 1711-1718.

Iwasa, Y., 1991. Sex change evolution and cost of reproduction. Behav. Ecol. 2, 56-68. Jennings, S., Kaiser, M.J., Reynolds, J.D., 2001. Marine fisheries ecology. Blackwell Science Ltd., London.

Jensen, A.L., 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53, 820-822.

Jørgensen, T., 1990. Long-term changes in age at sexual maturity of Northeast Arctic cod (Gadus morhua L.). J. Cons. ICES J. Mar. Sci. 46, 235-248.

Lester, N.P., Shuter, B.J., Abrams, P.A., 2004. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proc. R. Soc. Lond. B Biol. Sci. 271, 1625-1631.

Linde, M., Palmer, M., Alós, J., 2011. Why protogynous hermaphrodite males are relatively larger than females? Testing growth hypotheses in Mediterranean rainbow wrasse Coris julis (Linnaeus, 1758). Environ. Biol. Fishes 92, 337-349.

Lorenzen, K., 2000. Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programmes. Can. J. Fish. Aquat. Sci. 57, 2374-2381.

Lorenzen, K., 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish Biol. 49, 627-642.

McCormick, M.I., Ryen, C.A., Munday, P.L., Walker, S.P., 2010. Differing mechanisms underlie sexual size-dimorphism in two populations of a sex-changing fish. PLoS One 5, e10616.

McGarvey, R., Fowler, A.J., 2002. Seasonal growth of King George whiting (Sillaginodes punctata) estimated from length-at-age samples of the legal-size harvest. Fish. Bull. 100, 545-558.

Munday, P.L., Buston, P.M., Warner, R.R., 2006. Diversity and flexibility of sex-change strategies in animals. Trends Ecol. Evol. 21, 89-95.

Munday, P.L., Hodges, A.L., Choat, J.H., Gust, N., 2004. Sex-specific growth effects in protogynous hermaphrodites. Can. J. Fish. Aquat. Sci. 61, 323-327.

Munday, P.L., Ryen, C.A., McCormick, M.I., Walker, S.P.W., 2009. Growth acceleration, behaviour and otolith check marks associated with sex change in the wrasse Halichoeres miniatus. Coral Reefs 28, 623-634.

Neuhaus, P., Pelletier, N., 2001. Mortality in relation to season, age, sex, and reproduction in Columbian ground squirrels (Spermophilus columbianus). Can. J. Zool. 79, 465-470.

Olsen, E.M., Heino, M., Lilly, G.R., Morgan, M.J., Brattey, J., Ernande, B., Dieckmann, U., 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932-935.

Olsen, E.M., Lilly, G.R., Heino, M., Morgan, M.J., Brattey, J., Dieckmann, U., 2005. Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 62, 811-823.

Provost, M.M., Jensen, O.P., 2015. The Impacts of Fishing on Hermaphoditic and Treatment of Sex Change in Stock Assessments. Fisheries 40, 536-545.

Radomski, P.J., Grant, G.C., Jacobson, P.C., Cook, M.F., 2001. Visions for recreational fishing regulations. Fisheries 26, 7-18.

R Development Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Ricker, W.E., 1975. Computation and interpretation of biological statistics of fish populations. Department of the Environment, Fisheries and Marine Service, Crown, Ottawa, Candada.

Rijnsdorp, A.D., 1993. Fisheries as a large-scale experiment on life-history evolution: disentangling phenotypic and genetic effects in changes in maturation and reproduction of North Sea plaice, Pleuronectes platessa L. Oecologia 96, 391-401.

Sattar, S.A., Jørgensen, C., Fiksen, Ø., 2008. Fisheries-induced evolution of energy and sex allocation. Bull. Mar. Sci. 83, 235-250.

SEDAR, 2014. SEDAR 33 - Gulf of Mexico Gag Stock Assessment Report. SEDAR, North Charleston, SC. 609 pp. Available online at: http://www.sefsc.noaa.gov/sedar/Sedar_Workshops.jsp?WorkshopNum=33

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A., 2002. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583-639.

St. Mary, C.M., 1994. Sex allocation in a simultaneous hermaphrodite, the blue-banded goby (Lythrypnus dalli): the effects of body size and behavioral gender and the consequences for reproduction. Behav. Ecol. 5, 304-313.

Tecot, S.R., Gerber, B.D., King, S.J., Verdolin, J.L., Wright, P.C., 2013. Risky business: sex differences in mortality and dispersal in a polygynous, monomorphic lemur. Behav. Ecol. 24, 987-996.
von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquiries on growth laws.
II). Hum. Biol. 10, 181-213.

Walker, S.P., McCormick, M.I., 2009. Fish ears are sensitive to sex change. Biol. Lett. 5, 7376.

Walker, S.P., McCormick, M.I., 2004. Otolith-check formation and accelerated growth associated with sex change in an annual protogynous tropical fish. Mar. Ecol. Prog. Ser. 266, 201-212.

Walker, S.P.W., Ryen, C.A., McCormick, M.I., 2007. Rapid larval growth predisposes sex change and sexual size dimorphism in a protogynous hermaphrodite, Parapercis snyderi Jordan \& Starks 1905. J. Fish Biol. 71, 1347-1357.

Walters, C.J., Martell, S.J.D., 2004. Fisheries Ecology and Management. Princeton University Press, Princeton, New Jersey.

Warner, R.R., 1988. Sex change and the size-advantage model. Trends Ecol. Evol. 3, 133136.

Wilson, K.L., Matthias, B.G., Barbour, A.B., Ahrens, R.N., Tuten, T., Allen, M.S., 2015. Combining Samples from Multiple Gears Helps to Avoid Fishy Growth Curves. North Am. J. Fish. Manag. 35, 1121-1131.

Table Captions:
Table 1. List of equations used in describing length- and maturity-at-age for Gag.
Table 2. List of equations used in the yield-per-recruit analysis for Gag.
Table 3. Mean parameter estimates and 95% credible intervals (in parentheses) from each of the growth models. The tri-phasic Lester estimates of g, L_{∞} and k are broken into female-specific (within the tri-phasic Lester column) and male-specific estimates (in the male estimates column). Note that L_{∞} and k from the bi- and tri-phasic Lester growth models were derived from the estimates of h and g.

Table 4. Fishing mortality rates resulting in maximum yield per recruit ($F_{M A X}$) and spawning stock biomasses of 0.35 of unfished for combined sexes $\left(F_{35 T}\right)$, females only $\left(F_{35 F}\right)$ and males only $\left(F_{35 M}\right)$. The 95% credible intervals for each estimate are in parentheses. The von Bertalanffy and bi-phasic Lester models assume size-based, sex-independent natural mortality rates equal to the Brody growth coefficient (k). The tri-phasic Lester model with variable M assumes sizebased natural mortality changes after sex change and equals the sex-specific k whereas the triphasic Lester model with constant M assumes natural mortality is equal to the female-specific estimate of k for all ages.

Table 5 . Fishing mortality rates resulting in maximum yield-per-recruit ($F_{M A X}$) and spawning stock biomasses of 0.35 of unfished for combined sexes $\left(F_{35 T}\right)$, females only $\left(F_{35 F}\right)$ and males only $\left(F_{35 M}\right)$. The 95% credible intervals for each estimate are in parentheses. All models assume a size-based natural mortality rate, with natural mortality constant across all growth models (i.e., $\left.M=0.1342 \mathrm{yr}^{-1}\right)$.

Figure Captions:

Figure 1. Observed (dots) and predicted length-at-age (A), maturity-at-age (B, D, F) and sex change-at-age (C, E, G) of Gag using the von Bertalanffy model with reproductive schedules estimated separately (solid line; A-C), bi-phasic Lester (long-dashed line; A, D, E) and tri-phasic Lester (short-dashed line; A, F, G) models. Maturity- and sex change-at-age were estimated using logistic regression concurrently with the growth models.

Figure 2. Residual plots of the predicted length-at-age for each of the growth models. The solid line represents a Lowess smoother and the dotted line is set at zero.

Figure 3. Yield-per-recruit ($Y P R$; A), total spawning stock biomass-per-recruit ($S S B_{T} / R ; \mathrm{B}$) and sex-specific $S S B / R$ for females $\left(S S B_{F} / R ; \mathrm{C}\right)$ and males $\left(S S B_{M} / R ; \mathrm{D}\right)$ over a range of instantaneous fishing mortality rates (F) and growth models, assuming a size-based natural mortality rate. The von Bertalanffy and bi-phasic Lester models (solid and dotted black lines respectively) assume a sex-independent natural mortality rate equal to the Brody growth coefficient (k). The tri-phasic Lester model with variable M (dashed black line) assumes natural mortality rate changes after sex change and equals the sex-specific k whereas the tri-phasic Lester with constant M (dashed grey line) assumes natural mortality is equal to the femalespecific estimate of k for the entire life. The vertical lines highlight the growth-model specific estimates of $F_{M A X}(\mathrm{~A})$ and where the spawning stock biomasses drop below 35% of unfished (BD). It is important to note that in panel C, both of the tri-phasic Lester estimates are the same.

Figure 4. Yield-per-recruit ($Y P R ; \mathrm{A}$), total spawning stock biomass-per-recruit $\left(S S B_{T} / R ; \mathrm{B}\right)$ and sex-specific $S S B / R$ for females $\left(S S B_{F} / R ; \mathrm{C}\right)$ and males $\left(S S B_{M} / R ; \mathrm{D}\right)$ over a range of instantaneous fishing mortality rates (F) and growth models. All models assume a size-based
natural mortality rate with a natural mortality constant across all growth models (i.e. $M=0.1342$ yr^{-1}). The vertical lines highlight the growth-model specific estimates of $F_{M A X}(\mathrm{~A})$ and where the spawning stock biomasses drop below 35% of unfished condition (B-D).

mature

Likelihood of age a individual i being male

```
Da,i}~\operatorname{Bernoulli (P
```

Model Comparison
Deviance Information
Criterion
Posterior mean of the deviance
$D I C=2 \bar{D}-2 \ln (p(y \mid \bar{\theta}))$
$\bar{D}=\sum_{n=1}^{N}-\frac{2 \ln \left(p\left(y \mid \theta_{n}\right)\right)}{N}$

Table 2. List of equations used in equilibrium yield per recruit analysis for Gag.

Parameter	von Bertalanffy	Bi-phasic Lester	Tri-phasic Lester	Male Est.
$h(\mathrm{~mm})$		$139.3(137.7,141.0)$	$134.2(131.6,136.4)$	
$g\left(\mathrm{yr}^{-1}\right)$		$0.30(0.30,0.31)$	$0.28(0.27,0.29)$	$0.32(0.31,0.33)$
$L_{\infty}(\mathrm{mm})$	$1210(1200,1219)$	$1381(1367,1395)$	$1449(1427,1474)$	$1264(1238,1289)$
$k\left(\mathrm{yr}^{-1}\right)$	$0.14(0.14,0.14)$	$0.10(0.09,0.10)$	$0.09(0.09,0.09)$	$0.10(0.10,0.10)$
t_{0} or $t_{1}(\mathrm{yr})$	$-1.05(-1.08,-1.02)$	$-1.08(-1.12,-1.05)$	$-1.17(-1.22,-1.13)$	
$c v$	$0.11(0.11,0.11)$	$0.11(0.10,0.11)$	$0.11(0.10,0.11)$	
$T(\mathrm{yr})$	$3.45(3.20,3.65)$	$2.60(2.54,2.66)$	$2.70(2.62,2.82)$	
$\tau(\mathrm{yr})$	$12.60(12.00,13.31)$	$12.61(12.01,13.32)$	$12.70(12.10,13.43)$	
σ_{T}	$0.53(0.44,0.66)$	$0.86(0.75,0.99)$	$0.81(0.70,0.94)$	
σ_{τ}	$1.84(1.58,2.15)$	$1.84(1.59,2.14)$	$1.86(1.61,2.18)$	

			Tri-phasic Lester (Variable M)	Tri-phasic Lester (Constant M)
Metric	von Bertalanffy	Bi-phasic Lester		
$F_{M A X}\left(\mathrm{yr}^{-1}\right)$	$0.326(0.318,0.333)$	$0.245(0.237,0.253)$	$0.206(0.200,0.211)$	$0.206(0.200,0.211)$
$F_{35 T}\left(\mathrm{yr}^{-1}\right)$	$0.184(0.181,0.188)$	$0.176(0.170,0.182)$	$0.145(0.142,0.148)$	$0.145(0.142,0.148)$
$F_{35 F}\left(\mathrm{yr}^{-1}\right)$	$0.336(0.309,0.354)$	$0.231(0.218,0.243)$	$0.337(0.301,0.344)$	$0.337(0.301,0.344)$
$F_{35 M}\left(\mathrm{yr}^{-1}\right)$	$0.076(0.071,0.078)$	$0.076(0.071,0.081)$	$0.071(0.067,0.071)$	$0.071(0.067,0.071)$

Metric	von Bertalanffy	Bi-phasic Lester	Tri-phasic Lester
$F_{M A X}\left(\mathrm{yr}^{-1}\right)$	$0.303(0.302,0.304)$	$0.389(0.381,0.394)$	$0.394(0.385,0.410)$
$F_{35 T}\left(\mathrm{yr}^{-1}\right)$	$0.175(0.174,0.175)$	$0.256(0.248,0.264)$	$0.223(0.220,0.227)$
$F_{35 F}\left(\mathrm{yr}^{-1}\right)$	$0.329(0.302,347)$	$0.323(0.305,0.342)$	$0.442(0.399,0.454)$
$F_{35 M}\left(\mathrm{yr}^{-1}\right)$	$0.075(0.071,0.078)$	$0.081(0.075,0.087)$	$0.075(0.072,0.078)$

Maturity
Sex Change

Figure 2

- Unknown - Immature ○ Female
- Male

von Bertalanffy

Tri-phasic Lester

Fishing Mortality Rate

Fishing Mortality Rate

Fishing Mortality Rate

Fishing Mortality Rate

- von Bertalanffy
.... Bi-phasic Lester
- - Tri-phasic Lester (Variable M)
- - Tri-phasic Lester (Constant M)

Fishing Mortality Rate

Fishing Mortality Rate

Fishing Mortality Rate

- von Bertalanffy
.... Bi-phasic Lester
- - Tri-phasic Lester

